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Direct ring functionalisation of
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Abstract—Treatment of 1,4,7-trimethyl-1,4,7-triazacyclononane (metacn) with N-bromosuccinimide (NBS) gave a bicyclic ammo-
nium intermediate, which was ring-opened to 2-cyano-1,4,7-trimethyl-1,4,7-triazacyclononane by reaction with potassium cyanide.
Reduction to the amine followed by reaction with anhydrides gave amides, which could subsequently be converted to dinuclear tris-
l-oxo manganese complexes.
� 2006 Elsevier Ltd. All rights reserved.
The ligand 1,4,7-trimethyl-1,4,7-triazacyclononane
(metacn) and derivatives are reported to give numerous
transition metal complexes.1 In particular, the catalyti-
cally active dinuclear manganese tris-l-oxo-metacn
[L2Mn2O3]2+ complex has been the subject of many
studies,2 for example, the bleach activity of hydrogen
peroxide in laundry formulations could be boosted,2a

the epoxidation of olefins with hydrogen peroxide in
water2b or organic solvents2c and other catalytic oxida-
tion processes.2d–f The coordination behaviour and
catalytic activity has also generated interest in homo-
logues and derivatives to tune the behaviour of the
resulting complexes. Substitution on the nitrogens is
straightforward starting from the 1,4,7-triazacyclonon-
ane (tacn) intermediate.3 However, substitution on car-
bons of the nine-membered ring with functional
groups requires total synthesis for each derivative. Also
the harsh ring-forming conditions might prohibit intro-
duction of most functional groups.4,5 In this letter, we
report for the first time a new method for functionalisa-
tion of a triazacycle ring carbon starting from the read-
ily accessible metacn allowing the introduction of
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functional groups such as an amine or a carboxylic acid.
Conversion to the corresponding [L2Mn2O3]2+ complex
is also demonstrated which can be further derivatised.

Direct functionalisation of amines at their a-position
has been described in the literature.6 However, simple
amines are discussed and extension of this chemistry
to the metacn ligand may not be straightforward. Ini-
tially, the oxidation of tertiary amines using mercury
acetate,7 potassium hexacyanoferrate(III)8 and by elec-
trochemistry9 was investigated. An iminium intermedi-
ate might be generated, which could subsequently be
reacted with a nucleophile. N-Bromosuccinimde (NBS)
was used as an oxidant as this should lead to a similar
oxidation10 product, which might precipitate as the
iminium bromide, thereby stopping the reaction after
oxidation at one of the three amine groups.

Treatment of metacn with NBS in tetrahydrofuran
(THF) gave an exothermic reaction and a precipitate
was observed. The hygroscopic solid was proved by
NMR and mass spectrometry to consist of a mixture
of the HBr salts of the iminium product and metacn.
When solid anhydrous potassium carbonate was added
together with NBS to the reaction mixture, metacn.
HBr was no longer observed in the precipitate. The
precipitate was stirred with acetonitrile to dissolve the
iminium product and the inorganic salts were removed
by filtration. The reaction could be carried out on a
0.1–0.2 mol scale.11

mailto:jan.koek@ unilever.com
mailto:jan.koek@ unilever.com


3674 J. H. Koek, E. W. J. M. Kohlen / Tetrahedron Letters 47 (2006) 3673–3675
The structure of the precipitated product as derived
from NMR and mass spectroscopy is shown in Figure
1. The bicyclic structure is the result of an internal
nucleophilic attack on the iminium carbon. Reaction
of iminium ions with cyanide is known12 and although
no iminium function is present in the bicyclic molecule,
we attempted the reaction. Addition of cyanide opened
the bicyclic structure to form a nine-membered ring.
The resulting product contained a variable but small
amount of metacn, which could be easily removed by
vacuum distillation. According to NMR the distilled
product was >95% pure and had the expected struc-
ture.11 Scheme 1 shows the reduction of the nitrile group
to the corresponding aminomethyl group with lithium
aluminium hydride in refluxing THF.13 After work-up
the product, L1 was purified by vacuum distillation
and obtained in 25% yield based on metacn over three
steps.14

In order to form an Mn2O3 complex, the primary amino
group needed to be protected as during complexation
the protected amino group is less prone to participate
in coordination. Acylation of the primary amine was
accomplished using acetic anhydride or Boc-anhydride
giving the corresponding amides L2 or L3.15 The Boc
group is widely used for protection of amines and it
was expected that it could be removed by milder acid
treatment16 than the acetyl group. Also, the Mn com-
plex was expected to be stable towards acid treatment.
Both ligands L2 and L3 could indeed be converted in
the usual way into coordination complexes.2c,17 Acid
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Figure 1. The structure of the NBS oxidation product of metacn.
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Scheme 1. Reactivity of the oxidation product and conversion to the
amide manganese complexes.
treatment of the Boc-complex followed by purification
showed that deprotection occurred but was incomplete
and the deprotected complex could not be isolated in
pure form. Optimisation of the Boc cleavage, purifica-
tion and the coupling possibilities of the deprotected
amino group (e.g., via EDDS to Boc-protected glycine
as shown in the Supplementary data) need further
investigation.
Acknowledgements
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